Meggitt Safety System cables employ silicon dioxide dielectric, stainless steel copper composite outer jackets and hermetically sealed connectors to provide all welded assemblies that have set the industry standard for high performance and reliability in harsh or adverse environments.

In 1957, Electronic Specialties – subsequently acquired by Whittaker and renamed Whittaker Electronic Resources – successfully introduced a unique cable solution to the microwave industry when they developed and patented SiO$_2$ cables. With the acquisition of Whittaker by Meggitt in 1999, Meggitt Safety Systems has become a major supplier of coaxial and multi-conductor transmission line assemblies for a wide range of military and commercial applications.

The loss and phase stability allows the use of silicon dioxide coaxial cables in the most critical applications. Some of these applications include precision delay lines, phased arrays, and space borne applications and a variety of interconnection requirements for military aircraft and electronic warfare systems.

This high reliability performance, electrical stability and rugged construction results in an MTBF calculated to be in excess of one million hours. In addition, our semi-rigid cable is typically 30% lighter than the equivalent PTFE cable and yet has a flexibility that permits hand forming in tight installations with a bend radius as small as 1.5 times the cable diameter in some cases.
Coaxial cable specifications

Cable meets or exceeds the requirements for semi-flexible cables per MIL-T-81490

Materials
- **Dielectric**: Silicon Dioxide (99.985% pure) SiO₂
- **Center conductor**: OFHC copper
- **Outer conductor**: OFHC copper
- **Outer jacket**: AISI series stainless steel

Construction
The silicon dioxide dielectric is blended with a controlled amount of de-ionized water to form an extrusion mixture. The mixture is extruded around the copper center conductor in random lengths. After air drying, the extrusion is inserted into an oversized stainless steel copper lined jacket and is heated in a vacuum furnace to remove any residual impurities. The dielectric is then compacted by drawing or swaging the outer jacket to a predetermined diameter to provide 50 ohm impedance and the desired electrical density. When sized to required customer length, the cable is terminated by hermetic sealed connectors to provide a completely hermetic sealed cable assembly. Any required identification markings are permanently chem etched on the stainless steel jacket.

Environmental
- **Altitude**: No limit (welded & hermetic design)
- **Chemical resistance**: Hydraulic fluid, epoxy stripper, jet fuel, etc.
- **Hermeticity**: Leakage less than 1 x 10⁻⁸ cc/sec of helium leak rate (when terminated)
- **Humidity**: 0 to 100% relative
- **Tensile strength**: 100 to 500 pounds (dependent on diameter)
- **Random vibration**: 40 G's rms
- **Salt fog**: MILSTD-202
- **Shock**: 1200 G's pyrotechnical
- **Thermal**: -200C to +950C (Cable only. Assemblies limited by organic materials required by interface.)
- **Thermal shock**: -200C to +950C (Cable only)
- **Vibration**: 20G's, 50 to 2000 Hertz
- **Flexure**: Exceeds requirements of MIL-T-81490 for Class 2 coaxial cable when mounted in accordance with accepted airframe practices. Qualified to EW-5230-341-70 for large and small angle deflection.

Mechanical
- **Outer jacket diameter in (mm)**: 0.090 (2.29) 0.125 (3.18) 0.142 (3.61) 0.200 (5.08) 0.275 (6.99) 0.296 (7.52) 0.532 (13.51)
- **Outer copper conductor**: 0.003 (0.08) 0.004 (0.10) 0.004 (0.10) 0.004 (0.10) 0.004 (0.10) 0.004 (0.10) 0.004 (0.10)
- **Dielectric diameter**: 0.061 (1.55) 0.095 (2.40) 0.109 (2.77) 0.170 (4.32) 0.246 (6.25) 0.267 (6.78) 0.499 (12.70)
- **Inner conductor diameter**: 0.022 (0.56) 0.034 (0.85) 0.039 (0.99) 0.060 (1.53) 0.087 (2.21) 0.096 (2.44) 0.177 (4.50)
- **Minimum bend radius**: 0.30 (7.62) 0.50 (12.70) 0.50 (12.70) 0.60 (15.24) 0.70 (17.80) 0.70 (17.80) 1.50 (38.10)
- **Weight per foot lbs (gms)**: 0.017 (7.71) 0.024 (10.83) 0.035 (15.58) 0.048 (21.83) 0.078 (35.38) 0.090 (40.82) 0.210 (95.26)

Electrical
- **Dielectric constant**: 1.56
- **Velocity of propagation**: 80%
- **Impedance**: 50 Ohms 1 Ohm
- **Capacitance**: 25 pF/FT
- **Attenuation**: See Chart
- **Power CW (cable only)**: 0.990° 0.4 KW
 - 0.125° 1.0 KW
 - 0.142° 1.6 KW
 - 0.200° 2.6 KW
 - 0.275° 3.4 KW
 - 0.296° 3.4 KW
 - 0.532° 7.0 KW
- **Peak power**: 20 KW at 8 GHz
- **Delay**: 1.26 Nano Sec./ft.
- **Insulation resistance**: 1 x 10⁷ ohms/ft. (Ambient)
 - 1 x 10⁶ ohms/ft. (760C)
- **VSWR**: 2-4 GHz 1.20: 1 Maximum
 - 4-8 GHz 1.25: 1
 - 8-12 GHz 1.30: 1
 - 12-16 GHz 1.35: 1
 - 16-18 GHz 1.50: 1
- **EMI shielding**: -120 dB

If you have special requirements for coaxial cable assemblies, our professionally seasoned engineering staff will assist you in finding a solution that reliably meets your specifications.
To calculate insertion loss for a cable assembly multiply length in feet times loss in dB/ft as indicated above. Add the applicable loss for the connector pair. Round up the total to the next highest tenth dB. For maximum insertion loss of a cable assembly calculate loss at the highest frequency.

EXAMPLE: Cable assembly: .296" dia., 6' length, TNC-M/M, Freq. 8 Ghz

\[
0.163 \text{ dB/ft} \times 6 = 0.978 \\
0.978 + 0.375 = 1.353 \text{ dB max.}
\]

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>VHF</th>
<th>UHF</th>
<th>L</th>
<th>S</th>
<th>C</th>
<th>KU</th>
<th>K</th>
<th>KP</th>
</tr>
</thead>
<tbody>
<tr>
<td>.01</td>
<td>.017</td>
<td>.010</td>
<td>.010</td>
<td>.006</td>
<td>.004</td>
<td>.004</td>
<td>.002</td>
<td></td>
</tr>
<tr>
<td>.05</td>
<td>.038</td>
<td>.023</td>
<td>.022</td>
<td>.014</td>
<td>.010</td>
<td>.009</td>
<td>.005</td>
<td></td>
</tr>
<tr>
<td>.10</td>
<td>.055</td>
<td>.033</td>
<td>.031</td>
<td>.020</td>
<td>.014</td>
<td>.013</td>
<td>.007</td>
<td></td>
</tr>
<tr>
<td>.20</td>
<td>.078</td>
<td>.048</td>
<td>.045</td>
<td>.029</td>
<td>.020</td>
<td>.019</td>
<td>.011</td>
<td></td>
</tr>
<tr>
<td>.30</td>
<td>.096</td>
<td>.060</td>
<td>.056</td>
<td>.036</td>
<td>.025</td>
<td>.023</td>
<td>.013</td>
<td></td>
</tr>
<tr>
<td>.40</td>
<td>.112</td>
<td>.069</td>
<td>.065</td>
<td>.042</td>
<td>.029</td>
<td>.027</td>
<td>.016</td>
<td></td>
</tr>
<tr>
<td>.50</td>
<td>.126</td>
<td>.078</td>
<td>.073</td>
<td>.047</td>
<td>.033</td>
<td>.031</td>
<td>.018</td>
<td></td>
</tr>
<tr>
<td>.60</td>
<td>.138</td>
<td>.086</td>
<td>.081</td>
<td>.052</td>
<td>.037</td>
<td>.034</td>
<td>.020</td>
<td></td>
</tr>
<tr>
<td>.70</td>
<td>.150</td>
<td>.094</td>
<td>.088</td>
<td>.057</td>
<td>.040</td>
<td>.037</td>
<td>.022</td>
<td></td>
</tr>
<tr>
<td>.80</td>
<td>.161</td>
<td>.101</td>
<td>.094</td>
<td>.062</td>
<td>.043</td>
<td>.040</td>
<td>.024</td>
<td></td>
</tr>
<tr>
<td>.90</td>
<td>.172</td>
<td>.108</td>
<td>.066</td>
<td>.046</td>
<td>.043</td>
<td>.026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>.182</td>
<td>.114</td>
<td>.107</td>
<td>.070</td>
<td>.049</td>
<td>.045</td>
<td>.027</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td>.226</td>
<td>.144</td>
<td>.133</td>
<td>.088</td>
<td>.062</td>
<td>.057</td>
<td>.035</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>.264</td>
<td>.169</td>
<td>.157</td>
<td>.105</td>
<td>.073</td>
<td>.068</td>
<td>.043</td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>.299</td>
<td>.193</td>
<td>.179</td>
<td>.120</td>
<td>.084</td>
<td>.078</td>
<td>.049</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>.331</td>
<td>.214</td>
<td>.198</td>
<td>.134</td>
<td>.098</td>
<td>.087</td>
<td>.056</td>
<td></td>
</tr>
<tr>
<td>3.50</td>
<td>.361</td>
<td>.234</td>
<td>.217</td>
<td>.147</td>
<td>.103</td>
<td>.096</td>
<td>.062</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>.389</td>
<td>.255</td>
<td>.235</td>
<td>.160</td>
<td>.112</td>
<td>.104</td>
<td>.068</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>.416</td>
<td>.273</td>
<td>.252</td>
<td>.172</td>
<td>.120</td>
<td>.112</td>
<td>.074</td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>.442</td>
<td>.291</td>
<td>.269</td>
<td>.184</td>
<td>.128</td>
<td>.120</td>
<td>.080</td>
<td></td>
</tr>
<tr>
<td>5.50</td>
<td>.467</td>
<td>.309</td>
<td>.285</td>
<td>.196</td>
<td>.136</td>
<td>.127</td>
<td>.085</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>.491</td>
<td>.326</td>
<td>.300</td>
<td>.207</td>
<td>.144</td>
<td>.135</td>
<td>.091</td>
<td></td>
</tr>
<tr>
<td>6.50</td>
<td>.514</td>
<td>.342</td>
<td>.315</td>
<td>.218</td>
<td>.152</td>
<td>.142</td>
<td>.096</td>
<td></td>
</tr>
<tr>
<td>7.00</td>
<td>.537</td>
<td>.359</td>
<td>.330</td>
<td>.229</td>
<td>.159</td>
<td>.149</td>
<td>.102</td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td>.559</td>
<td>.374</td>
<td>.344</td>
<td>.240</td>
<td>.167</td>
<td>.156</td>
<td>.107</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>.581</td>
<td>.390</td>
<td>.358</td>
<td>.250</td>
<td>.174</td>
<td>.163</td>
<td>.112</td>
<td></td>
</tr>
<tr>
<td>8.50</td>
<td>.602</td>
<td>.405</td>
<td>.372</td>
<td>.260</td>
<td>.181</td>
<td>.170</td>
<td>.117</td>
<td></td>
</tr>
<tr>
<td>9.00</td>
<td>.623</td>
<td>.420</td>
<td>.386</td>
<td>.270</td>
<td>.188</td>
<td>.176</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.50</td>
<td>.643</td>
<td>.435</td>
<td>.399</td>
<td>.280</td>
<td>.195</td>
<td>.183</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>.663</td>
<td>.450</td>
<td>.412</td>
<td>.290</td>
<td>.202</td>
<td>.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.50</td>
<td>.683</td>
<td>.464</td>
<td>.425</td>
<td>.300</td>
<td>.209</td>
<td>.196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>.702</td>
<td>.478</td>
<td>.438</td>
<td>.310</td>
<td>.216</td>
<td>.202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.50</td>
<td>.721</td>
<td>.492</td>
<td>.450</td>
<td>.319</td>
<td>.222</td>
<td>.208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>.740</td>
<td>.506</td>
<td>.463</td>
<td>.328</td>
<td>.229</td>
<td>.214</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.50</td>
<td>.752</td>
<td>.519</td>
<td>.476</td>
<td>.337</td>
<td>.235</td>
<td>.220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>.777</td>
<td>.533</td>
<td>.487</td>
<td>.347</td>
<td>.242</td>
<td>.226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.50</td>
<td>.795</td>
<td>.546</td>
<td>.499</td>
<td>.356</td>
<td>.248</td>
<td>.232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>.813</td>
<td>.560</td>
<td>.511</td>
<td>.365</td>
<td>.254</td>
<td>.238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.50</td>
<td>.830</td>
<td>.573</td>
<td>.525</td>
<td>.374</td>
<td>.261</td>
<td>.244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>.848</td>
<td>.586</td>
<td>.535</td>
<td>.383</td>
<td>.267</td>
<td>.250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.50</td>
<td>.865</td>
<td>.599</td>
<td>.547</td>
<td>.392</td>
<td>.273</td>
<td>.256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>.882</td>
<td>.612</td>
<td>.558</td>
<td>.400</td>
<td>.279</td>
<td>.262</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.50</td>
<td>.899</td>
<td>.624</td>
<td>.570</td>
<td>.409</td>
<td>.285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>.916</td>
<td>.637</td>
<td>.581</td>
<td>.418</td>
<td>.291</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.50</td>
<td>.933</td>
<td>.649</td>
<td>.592</td>
<td>.427</td>
<td>.297</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td>.949</td>
<td>.662</td>
<td>.603</td>
<td>.436</td>
<td>.303</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>1.014</td>
<td>.711</td>
<td>.647</td>
<td>.469</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td>1.077</td>
<td>.759</td>
<td>.690</td>
<td>.502</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>1.138</td>
<td>.806</td>
<td>.732</td>
<td>.535</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td>1.198</td>
<td>.851</td>
<td>.773</td>
<td>.567</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.00</td>
<td>1.256</td>
<td>.897</td>
<td>.813</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.00</td>
<td>1.313</td>
<td>.941</td>
<td>.853</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.00</td>
<td>1.370</td>
<td>.985</td>
<td>.892</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.00</td>
<td>1.425</td>
<td>1.028</td>
<td>.931</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.00</td>
<td>1.479</td>
<td>1.071</td>
<td>.969</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.00</td>
<td>1.533</td>
<td>1.113</td>
<td>1.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.00</td>
<td>1.586</td>
<td>1.155</td>
<td>1.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To calculate insertion loss for a cable assembly multiply length in feet times loss in dB/ft as indicated above. Add the applicable loss for the connector pair. Round up the total to the next highest tenth dB. For maximum insertion loss of a cable assembly calculate loss at the highest frequency.

EXAMPLE: Cable assembly: .296" dia., 6' length, TNC-M/M, Freq. 8 Ghz

\[
0.163 \text{ dB/ft} \times 6 = 0.978 \\
0.978 + 0.375 = 1.353 \text{ dB max.}
\]
RF SiO₂ cables

Cable assembly configurations and applications

Configurations
Semi-Rigid SiO₂ coaxial cable features rugged all-welded construction with a composite stainless steel outer jacket and fusion bonded copper outer conductor, high purity silicon dioxide insulation and oxygen free high conductivity copper center conductor. Combined with hermetically sealed, welded connectors the resulting cable assembly provides unparalleled phase and attenuation stability over a wide range of temperatures with high accuracy and reliability in critical operational situations.

Standard SiO₂ cable assemblies are available with all standard military connector configurations and cable diameters as listed below:

- **.047”**
- **.079”**
- **.090”**
- **.125”**
- **.142”**
- **.200”**
- **.275”**
- **.296”**
- **.532”**

* (Please request our flyer for more information on this product)

Consult the factory for special cable diameters. We offer a variety of standard connector interfaces. Connectors are fabricated per MIL-STD-345, MIL-T-81490, MIL-C-87104 and other standards.

Interfaces include SMP, 2.4 mm, 3.5 mm, SMA, TNC, N, HN, SSMA, SC, to name the most commonly used. Custom interface connectors can be provided to meet unique customer specifications. Blind mate and replaceable connectors are also available.

Applications
Meggitt Safety System cable assemblies are qualified to MIL-T-81490, MIL-C-39012 and other military and commercial specifications. Our cable assemblies have been installed on the majority of military airborne platforms since 1968.

A partial list of program participation includes:

- AH-64
- AV-8B
- A-6
- B-1B
- B-2
- C-17
- C130
- F-14
- F-15E
- F-16
- GPS
- Imarsat
- MX Missile
- SR-71
- Space Shuttle
- Tomahawk
- U-2
- F-5
- J-Stars
- Trident
- AH-1
- UH-60

Common applications include:
- Electronic Warfare Systems
- Radar Systems
- Satellite Systems
- Cryogenic Feedthroughs
- High Power Interconnects
- Phase and Amplitude Stable Interconnections
- High Temperature Umbilicals
- Delay Lines
- Antenna Elements and Interconnect Cables
- Calibrated Test Cables
- Preformed Cable Assemblies with complex bends and configurations requiring tight bend radius

Meggitt Safety Systems Inc
1915 Voyager Avenue
Simi Valley
CA 93063-3349
USA
Tel: +1 805 584 4100
Fax: +1 805 584 9157
marketing@safetysystem.com
http://www.meggitsafety.com
http://www.stablecable.com
http://www.h2o2analyzer.com
http://www.meggitt.com

Meggitt Safety Systems is a Meggitt group company.
Headquartered in the United Kingdom, Meggitt PLC is an international group operating in North America, Europe and Asia. Known for its specialized extreme environment engineering, Meggitt is a world leader in the aerospace, defense and electronics industries.

CA003 REV E MAY 2006 – INTERNATIONAL RELEASE